CSU-ACM Online Judge

1342: Double

      Time Limit: 1 Sec     Memory Limit: 128 Mb     Submitted: 196     Solved: 90    

Description

    有一个由M个整数组成的序列,每次从中随机取一个数(序列中每个数被选到的概率是相等的)累加,一共取N次,最后结果能被3整除的概率是多少?

Input

    输入包含多组数据。
    对于每组测试数据,第一行包含两个整数M, N (1 <= M <= 100, 1 <= N <= 30),含义同上。接下来一行包含M个在[1, 100]范围内整数,依次描述了这个序列中的各个整数。

Output

    对于每组数据,用“Case X: Y”的格式输出答案,其中X表示是第几组测试数据(从1开始),Y表示最后结果能被3整除的概率,四舍五入保留8位小数。

Sample Input

2 2
1 2
1 2
4
1 3
4
5 10
4 5 3 1 5

Sample Output

Case 1: 0.50000000
Case 2: 0.00000000
Case 3: 1.00000000
Case 4: 0.33333340

Hint

    这个题目主要是想推荐大家用“double”处理浮点数,而尽量不要用“float”,因为“float”的精度偏低,往往不能满足题目的精度要求,所以在ACM竞赛中索性可以直接使用“double”去处理浮点数问题。“double”用“%lf”控制读入,“%f”控制输出。
    我们先解决一下其他的细节问题再来讨论这个题的思路。
    首先,这个题目也是有多组数据的,但不像“A Sample Problem”那样直接给出了数据的组数,那么要怎么处理呢?这时我们一般采用类似while(scanf(“%d%d”, &M, &N) != EOF){}这样的代码来处理,“!= EOF”是关键,至于他的具体含义就不过多介绍了,总之有了这个框架之后,我们直接在while循环里面写我们处理每组数据的代码就可以了。这时你可能会有这样的疑问:如果这么写代码的话,那么我在手动输入样例的时候怎么才算结束输入呢?Ctrl + Z,然后回车就OK了!
    其次,保留8位小数怎么处理呢?一般在ACM竞赛里面,如果没有明确说明具体怎么处理(比如要用“去尾法”),或者说让“四舍五入”,我们都采用类似printf(“%.8f”, x)的形式保留指定位数的小数。至于使用C++中的cout输出的同学,请自己查阅控制小数位数的相关资料。
    接下来我们就分析这个题目怎么做吧。
    首先,最后能不能被3整除,实际上和最后取出的整数之和(不妨记这个和为“S”)模3的结果有关系。所谓的“模”就是C/C++中的运算符“%”,就是“除以某个数取余”的意思。如果S%3==0,那么就是能被3整除,如果S%3==1或者S%3==2,那么就不能被3整除。也就是说我们要计算的就是S%3==0的概率。
    我们不妨分析一下第四个样例。取十次有点多,我们先取一次看看。
    取一次的话,模3得0的数只有3,所以S%3==0的概率就是0.2(记这个概率为p0),模3得1的数有两个:4和1,所以S%3==1的概率就是0.4(记这个概率为p1),同样的,模3得2的数有两个:5和5,所以S%3==2的概率也是0.4(记这个概率为p2)。
    再分析一下取两次的情况?
    取两次的话S%3==0的概率要怎么算呢?p0*p0 + p1*p2 + p2*p1 = 0.36。这么算的含义是什么呢?因为要保证最后S%3==0,那么如果第一次取出的数模3得0的话,第二次取的数必须也是模3得0,同样的,如果第一次取出的数模3得1的话,那么第二次取出的数必须是模3得2,如果第一次取出的数模3得2的话,那么第二次取出的数必须模3得1。这样我们就得到了上面的式子。同理,我们可以计算S%3==1的概率为p0*p1 + p1*p0 + p2*p2 = 0.32,S%3==2的概率也是0.32。
    再分析一下取三次的情况?
    取三次的话S%3==0的概率应当是0.36*p0 + 0.32*p2 + 0.32*p1。这么算的意义想必大家已经想到了,因为我们要保证最后S%3==0,那么如果前两次取出的数之和模3得0的话,那么第三次取出的数必须也是模3得0,同样的,如果前两次取出的数之和模3得1的话,那么第三次取出的数必须是模3得2,如果前两次取出的数之和模3得2的话,那么第三次取出的数必须是模3得1。同理,我们也很容易写出S%3==1以及S%3==2的概率要怎么算。
    分析到这里想必大家应该已经想到第四次,第五次,一直到第十次要怎么计算了吧?用类似的办法,根据第三次的结果就可以计算出第四次的结果,根据第四次的结果就可以算出第五次的,等等。这样即使一直算到一百次也不成问题!for循环100次就OK了。
    同样的,我会给出示例代码,如果你觉得把上面的思路转化成代码有些困难的话可以参考一下示例代码,但最后一定要按自己的思路一气呵成一份完整的代码并获得“Accept”哟~


Source

ACM入门示例(第一季)